1 The displacement, $x \mathrm{~m}$, from the origin O of a particle on the x-axis is given by

$$
x=10+36 t+3 t^{2}-2 t^{3},
$$

where t is the time in seconds and $-4 \leqslant t \leqslant 6$.
(i) Write down the displacement of the particle when $t=0$.
(ii) Find an expression in terms of t for the velocity, $v \mathrm{~m} \mathrm{~s}^{-1}$, of the particle.
(iii) Find an expression in terms of t for the acceleration of the particle.
(iv) Find the maximum value of v in the interval $-4 \leqslant t \leqslant 6$.
(v) Show that $v=0$ only when $t=-2$ and when $t=3$. Find the values of x at these times.
(vi) Calculate the distance travelled by the particle from $t=0$ to $t=4$.
(vii) Determine how many times the particle passes through O in the interval $-4 \leqslant t \leqslant 6$.

2 A particle moves along the x-axis with velocity, $v \mathrm{~m} \mathrm{~s}^{-1}$, at time t given by

$$
v=24 t-6 t^{2}
$$

The positive direction is in the sense of x increasing.
(i) Find an expression for the acceleration of the particle at time t.
(ii) Find the times, t_{1} and t_{2}, at which the particle has zero speed.
(iii) Find the distance travelled between the times t_{1} and t_{2}.

3 Two girls, Marie and Nina, are members of an Olympic hockey team. They are doing fitness training. Marie runs along a straight line at a constant speed of $6 \mathrm{~ms}^{-1}$.

Nina is stationary at a point O on the line until Marie passes her. Nina immediately runs after Marie until she catches up with her.

The time, $t \mathrm{~s}$, is measured from the moment when Nina starts running. So when $t=0$, both girls are at O .
Nina's acceleration, $a \mathrm{~ms}^{-2}$, is given by

$$
\begin{array}{ll}
a=4-t & \text { for } 0 \leqslant t \leqslant 4, \\
a=0 & \text { for } t>4 .
\end{array}
$$

(i) Show that Nina's speed, $v \mathrm{~ms}^{-1}$, is given by

$$
\begin{array}{ll}
v=4 t-\frac{1}{2} t^{2} & \text { for } 0 \leqslant t \leqslant 4, \\
v=8 & \text { for } t>4 .
\end{array}
$$

(ii) Find an expression for the distance Nina has run at time t, for $0 \leqslant t \leqslant 4$.

Find how far Nina has run when $t=4$ and when $t=5 \frac{1}{3}$.
(iii) Show that Nina catches up with Marie when $t=5 \frac{1}{3}$.

4 Two cars, P and Q , are being crashed as part of a film 'stunt'.
At the start

- $\quad P$ is travelling directly towards Q with a speed of $8 \mathrm{~m} \mathrm{~s}^{-1}$,
- Q is instantaneously at rest and has an acceleration of $4 \mathrm{~m} \mathrm{~s}^{-2}$ directly towards P.

P continues with the same velocity and Q continues with the same acceleration. The cars collide T seconds after the start.
(i) Find expressions in terms of T for how far each of the cars has travelled since the start.

At the start, P is 90 m from Q .
(ii) Show that $T^{2}+4 T-45=0$ and hence find T.

5 The velocity, $v \mathrm{~m} \mathrm{~s}^{-1}$, of a particle moving along a straight line is given by

$$
v=3 t^{2}-12 t+14
$$

where t is the time in seconds.
(i) Find an expression for the acceleration of the particle at time t.
(ii) Find the displacement of the particle from its position when $t=1$ to its position when $t=3$. [4]
(iii) You are given that v is always positive. Explain how this tells you that the distance travelled by the particle between $t=1$ and $t=3$ has the same value as the displacement between these times.

